Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity.

نویسندگان

  • V Khatri
  • J A Hartings
  • D J Simons
چکیده

Layer IV circuitry in the rodent whisker-to-barrel pathway transforms the thalamic input signal spatially and temporally. Excitatory and inhibitory barrel neurons display response properties that differ from each other and from their common thalamic inputs. Here we further examine thalamocortical response transformations by characterizing the responses of individual thalamic barreloid neurons and presumed excitatory and inhibitory cortical barrel neurons to periodic whisker deflections varying in frequency from 1 to 40 Hz. Both pulsatile and sinusoidal periodic stimulation of fixed deflection amplitude were used to assess stimulus-evoked adaptation of thalamocortical units (TCUs), fast-spike barrel units (FSUs: presumed inhibitory neurons), and regular-spike barrel units (RSUs: presumed excitatory neurons). Monotonic, frequency-dependent reductions in firing were observed in thalamic and cortical neurons to the second and subsequent stimuli in trains of high (pulsatile)- and low (sinusoidal)-velocity deflections. RSUs and FSUs adapted substantially more than their thalamic input neurons, and at all frequencies, FSUs fired at higher rates than the other two cell types. For example at 40 Hz, response magnitudes of TCUs decreased by 34%, FSUs by 72%, and RSUs by 78%. Across frequencies, RSUs and FSUs displayed more cycle-by-cycle entrainment and phase-locked responses for (high velocity) pulsatile than (lower velocity) sinusoidal deflections; for TCUs, phase-locking was equivalent for both stimuli, but entrainment was higher for sinusoidal deflections. Strong feed-forward inhibition, in conjunction with synaptic depression, renders the firing of barrel neurons sparse but temporally faithful to the occurrence of repetitive whisker deflections, especially when they are of high velocity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angular tuning and velocity sensitivity in different neuron classes within layer 4 of rat barrel cortex.

Local circuitry within layer IV whisker-related barrels is preferentially sensitive to thalamic population firing synchrony, and neurons respond most vigorously to stimuli, such as high-velocity whisker deflections, that evoke it. Field potential recordings suggest that thalamic barreloid neurons having similar angular preferences fire synchronously. To examine whether angular tuning of cortica...

متن کامل

Angularly nonspecific response suppression in rat barrel cortex.

Response modulation by prior sensory stimulation is a common property of cortical neurons. The degree to which effects are specific to the adapting stimulus provides insights into properties of the underlying circuitry. Here, we examined the effects of an adapting whisker deflection's angle on the angular tuning of layer IV barrel neurons and their major input source, thalamic barreloid neurons...

متن کامل

Circuit dynamics and coding strategies in rodent somatosensory cortex.

Previous experimental studies of both cortical barrel and thalamic barreloid neuron responses in rodent somatosensory cortex have indicated an active role for barrel circuitry in processing thalamic signals. Previous modeling studies of the same system have suggested that a major function of the barrel circuit is to render the response magnitude of barrel neurons particularly sensitive to the t...

متن کامل

Stimulus-specific and stimulus-nonspecific firing synchrony and its modulation by sensory adaptation in the whisker-to-barrel pathway.

The stimulus-evoked response of a cortical neuron depends on both details of the afferent signal and the momentary state of the larger network in which it is embedded. Consequently, identical sensory stimuli evoke highly variable responses. Using simultaneous recordings of thalamic barreloid and/or cortical barrel neurons in the rat whisker-to-barrel pathway, we determined the extent to which t...

متن کامل

Adaptation of trigeminal ganglion cells to periodic whisker deflections.

Trigeminal ganglion neurons in adult rats adapt to periodic whisker deflections in the range of 1-40 Hz, manifested as a reduction in spike counts to progressively later stimuli in a train of pulsatile or sinusoidal deflections. For high velocity, pulsatile deflections, adaptation is time- and frequency-dependent; as in the case of thalamic and cortical neurons, adaptation is greater at higher ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2004